

TEST CODE **02212010**

MAY/JUNE 2006

FORM TP 2006185

CARIBBEAN EXAMINATIONS COUNCIL

ADVANCED PROFICIENCY EXAMINATION

CHEMISTRY

UNIT 2 - PAPER 01

1 hour 45 minutes

Candidates are advised to use the first 15 minutes for reading through this paper carefully. Writing may begin during this time.

READ THE FOLLOWING INSTRUCTIONS CAREFULLY

- 1. This paper consists of NINE questions.
- 2. There are THREE questions from each Module. Answer ALL questions.
- 3. Write answers in this booklet.
- 4. ALL working must be shown in this booklet.
- 5. The use of non-programmable calculators is permitted.
- A data booklet is provided.

MODULE 1

Answer ALL questions.

(a)	Write an expression for the solubility product of lead (II) chloride.	

Lead (II) chloride (PbCl₂) is a sparingly soluble salt.

[2 marks]

(b) A saturated solution of PbCl₂ contains 0.025 mol dm⁻³ at 25 °C. Calculate the K_{s,p} of PbCl₂.

[3 marks]

(c)	A student finds that on adding NaCl(aq) to a saturated solution of PbCl ₂ a tate forms.	white precipi-
	Explain this observation.	
		1
		7
		[5 marks]
	To	otal 10 marks
(a)	(i) Explain the meaning of the term 'weak acid'.	
		[2 marks]
	(ii) Account for the sensation that occurs when stung by an ant.	
	N	
		[2 marks]
(b)	A sample of the mixture responsible for the sting is extracted from the an to determine the pH and acid concentration. The pH of the sample is 2.	
	(i) Suggest a simple method of determining pH.	

(ii)	dm ⁻³ s with 5	odium hydroxide solution. 10 cm³ of sodium hydroxide reacts completely cm³ of the sample. Given that the equation for the reaction between hydroxide and methanoic acid is
	NaOH	$I(aq) + HCOOH(aq) \rightarrow HCOO Na(aq) + H_2O(l)$
	a)	Suggest a suitable indicator for this titration.
		[1 mark]
	b)	Calculate the concentration of the acid in the sample.
		[1 mark]
	c)	Use your answer to (ii) b) above and the pH value of the sample to calculate the value of $K_{\underline{a}}$ for the acid.
		[3 marks]
		Total 10 marks

are compared to determine standard electrode potentials.	
(i) Draw a labelled diagram to show how the standard electrode potential for Zn ²⁺ (aq) / Zn (s) electrode can be found by combining it with the standard hydrogen electrode.	
	11
(ii) Which of the half cells is the positive electrode?	KSJ
[1 mar)	 k]
(iii) Using arrows, indicate on the diagram drawn in (i) above, the direction in wh the electrons flow through the external circuit. [1 mark	
A Zn2+ (aq) / Zn (s) half cell is connected to a Ag+(aq) / Ag (s) half cell as shown bel	ow
$Zn(s)/Zn^{2+}(aq):: Ag^{+}(aq)/Ag(s)$	
(i) Write the equations for the reactions occurring at each half cell, using electro- potentials given in the data booklet.	ode
Positive electrode	_
Negative electrode	
[2 mark	ks]
(ii) Calculate the standard e.m.f. of the cell.	

[1 mark]

	(iii)	A student sets up the Ag* (aq)/ Ag (s) half cell in (b) page 5, using a solution of 0.1 mol dm ⁻³ Ag* ions instead of 1 mol dm ⁻³ Ag* ions. Suggest how this would affect the e.m.f. of the cell. Give a reason for your answer.
		[2 marks]
		Total 10 marks
		MODULE 2
		Answer ALL questions.
		elements, beryllium to barium (Be to Ba), and their compounds show distinct as in properties and behaviour.
(a)	Write	an equation for the first ionization energy of beryllium (Be).
	-	[1 mark]
(b)		the data booklet provided, explain the trend in the first ionization energy with c radii for the Group II elements.
	-	[2 marks]
(c)	Write	an equation for the reaction between ONE of the Group II elements and water.
	-	[2 marks]
		[2 mark

[Be ²⁺ -	$-2e^- \Longrightarrow Be E^0 = -1.$	85 V].		
				[2x
Explain is desc	the variation in the soluended.	bility of the sulph	ates of Group I.	
		bility of the sulph	ates of Group I	
		bility of the sulph	ates of Group I.	
		bility of the sulph	ates of Group I.	
		bility of the sulph	ates of Group I.	
		bility of the sulph	ates of Group I.	

5. (a) Part of the periodic table is shown in Figure 1 below.

	Mg		A1		Cl
K		Fe			
					I
	Ba			Pb	

Figure 1

Write an ion of an element shown in Figure 1, which will react with EACH of the following substances:

- Acidified aqueous silver nitrate to form a white precipitate
- (ii) Aqueous lead (II) nitrate to form a yellow precipitate
- (iii) Aqueous potassium hydroxide to form a red-brown precipitate
- (iv) Aqueous sodium carbonate to form a white precipitate

[4 marks]

- (b) X is a powdered mixture containing a soluble and an insoluble salt. A sample of X is treated in the following manner:
 - I. Water is added to X and the mixture is filtered.
 - II. The residue reacts completely with dilute nitric acid and a colourless gas evolves, which forms a white precipitate with aqueous calcium hydroxide. The resulting solution reacts with both aqueous ammonia and sodium hydroxide to form a white precipitate, that does not dissolve in excess of the reagents.
 - III. One sample of the filtrate reacts with acidified barium chloride to form a white precipitate. Another sample reacts with aqueous ammonia and sodium hydroxide to form a white precipitate which is soluble in excess of the reagents.

	(i)	Using	the information given on page 8, deduce the possible	ions present in the
		a)	residue	
				[2 marks]
		b)	filtrate.	
				[2 marks]
	(ii)	Write residu	a balanced ionic equation for the reaction between ue.	nitric acid and the
		-		[2 marks]
				Total 10 marks
	states (i)		rmine the oxidation state of vanadium in VO_3^- and VO	2+.
	(ii)	State	TWO OTHER characteristics of transition elements.	[2 marks]
				[2 marks]
(b)	Comp	olete the	e electronic configuration of a	
	(i)	chror	nium atom, Cr	
		1 s^2	$2 s^2 2 p^6 3 s^2 3 p^6 $	[1 mark]
	(ii)	chror	nium ion, Cr ³⁺ .	[
	0.00		2 s ² 2p ⁶ 3 s ² 3p ⁶	
				[1 mark]

In an aqueous solution of chromium (III) chloride ($CrCl_3(aq)$), chromium forms the complex ion $[Cr(H_2O)_4 Cl_2]^+$ (aq).
Deduce the likely shape and the bond angles in this complex ion.
Shape: [1 mark]
Bond angle: [1 mark]
It has been observed that a solution of aqueous chromium (III) ions, $[Cr(H_2O)_6]^{3+}$ (aq) is
weakly acidic. Suggest an explanation for this observation.
[2 marks]
Total 10 marks

MODULE 3

Answer ALL questions.

7.	tion o	falumin	and Paul Heroult independently developed the method for the large-scale productium from alumina. On application of the extraction procedure, 1900 kg of alumina g of cryolite, 450 kg of carbon and 5.6 x 109 J yield 1000 g of aluminium metal.
	(a)	Descr	ibe and explain the use of EACH of the following in the Hall-Heroult process.
		(i)	Cryolite
			[2 marks]
		(ii)	Carbon
			[2 marks]
	(b)	Accor	unt for the requirement of $5.6 \times 10^9 \mathrm{J}$ of energy to produce $1000 \mathrm{~kg}$ of aluminium .
		i)	
		_	
		_	[2
			[2 marks]

. (0	c) (1)	Show all working.	Al_2O_3 .
		V	

			marks]
	(ii)	Comment on the efficiency of the process in the extraction of aluminium ore.	n from its
		[1	mark]
		Total 10	marks
b y	ecause of the	ocarbons, CFCs, have found application in a variety of commercial prices special properties. However, CFCs can persist in the atmosphere fentists have provided evidence of their decomposition products in the strate has proven to be of concern regarding the impact on human health.	for many
(;		TWO commercial products in which CFCs could be found before regimplemented.	gulations
		[2	marks]
(1	b) State	TWO properties of CFCs that make them applicable in the products giver	n in (a).
	_		
	3 -101		
	-	[2	marks]

	[2 m
It has befor	been estimated that a molecule of $\mathrm{CF_2Cl_2}$ persists in the atmosphere for 120 e it is destroyed.
(i)	Suggest a reason for the persistence of this CFC in the atmosphere in te its molecular features.
	[2 m
(ii)	$\begin{tabular}{ll} \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & $
(ii)	
(ii)	

Total 10 marks

(i)	Describe with the aid of an equation how nitrogen dioxide (NO ₂) is produced naturally
(1)	in the atmosphere.
	[2 marks]
(ii)	Identify ONE human activity that alters the atmospheric concentration of oxides of nitrogen and explain the chemistry involved in the production of the pollutant.
	[2 marks]
(iii)	Describe, with the aid of an equation, one environmental change that occurs due to the
,	presence of nitrogen dioxide as a pollutant in the atmosphere.
	[3 marks]
(iv)	Recent newspaper reports indicate that it is no longer possible to complete a surface crossing of the Arctic Ocean from Alaska through the North Pole to Norway because there is insufficient ice. Suggest an explanation for this phenomenon.
	[3 marks]

Total 10 marks

END OF TEST